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Abstract
We present a content-addressable memory whose central component is a
superconducting crossbar array with 2N elements connected by N2 junctions.
Because multiple pathways exist between any two elements, this storage device
is tolerant to physical defects in the interconnections. Furthermore, each
pattern of N bits is stored non-locally in the N2 junctions, so information
access and retrieval are tolerant to input errors. This superconducting memory
should exhibit picosecond single-bit acquisition times with negligible energy
dissipation during switching and multiple non-destructive read-outs of the
stored data.

The demand for high-density data storage with ultrafast accessibility motivates the search for
new memory implementations. Ideally such storage devices should be robust against input
error (fault tolerant) and unreliability of individual elements (defect tolerant). In conventional
memory devices, bits are stored in distinct physical elements at specific locations; they are
addressed by their spatial coordinates. The corruption of any input (bit address) or storage
element results in the loss of a particular portion of the stored pattern. By contrast, in an
associative memory each image can be addressed by a part of its content, even if somewhat
corrupted, thus making it tolerant to input errors [1]. Furthermore, if it is constructed such that
p patterns each of N pixels are stored non-locally in Neff > Np physical elements, it might
also be robust against the unreliability of device components. A similar situation is familiar in
holography, where an image is reconstructed from recorded interference fringes; this process
is not significantly affected by partial corruption of the holographic plate.

The primary component of our defect-tolerant associative memory is a superconducting
crossbar network (figure 1), where each bit is represented by a wire. More specifically, this
array consists of a stack of two perpendicular sets ofN parallel wires separated by a thin oxide
layer [2–5]. At low temperatures a Josephson junction exists at each node of this array; each
pattern of N bits is stored non-locally in these N2 interconnections. The redundant crossbar
design ensures that each pair of bits (wires) is physically linked by many paths, thereby allowing
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Figure 1. A logical representation of (a) a McCulloch–Pitts neuron and (b) a McCulloch–Pitts
neural network. Here ξj = ±1 and ξ̃j = ±1 are the inputs (blue) and the outputs (red) respectively,
and Jjk are the couplings (black). The non-linear elements (neural cells) are magenta. (c) A
schematic diagram of the crossbar Josephson memory cell where the inputs (blue) and outputs
(red) are voltage pulses. The role of the logical couplings (black) is played by the Josephson
junctions, whose phases are controlled by local applied fields B.

uninterrupted interbit contact despite some faulty couplings; a related architecture has been
used to explore defect-tolerant computation [6].

In this content-addressable memory, each image ofN bits is coded by 2N superconducting
phases, {φj , φk} with 1 � (j, k) � N , associated with the 2N wires. More specifically, the
desired patterns are stored in the N2 array junctions and correspond to stable configurations of
the 2N superconducting phases. Each stored image can be addressed/retrieved using voltage
pulses and the Josephson phase–voltage relation

�φj = 2π

�0

∫
V dt

where �φj is the phase change of the j th wire, and �0 is the flux quantum. Thus the
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inputs/outputs of this superconducting memory are short voltage pulses with fixed area
(cf. figure 1), in contrast to the constant voltage levels used in conventional semiconductor
electronics.

Superconducting memory devices show promise for ultrafast high-density information
storage with low power dissipation. In many early designs, digital information was stored
locally in trapped magnetic fluxes that were switched between single-flux quantum (SFQ)
states, � ∈ {0,�0}, by Josephson junctions [7, 8]. In such static SFQ circuitry, the bit
information was retrieved by voltage levels; the required reset of the latching junction after each
retrieval event limited the clock speed of the cell. In order to maintain their advantage in speed
compared to other technologies, Josephson-junction devices must use SFQ for both information
storage and retrieval. Dynamical SFQ technology, where information is passed between
circuit elements with SFQ voltage pulses (

∫
V dt = �0), offers this possibility [9]. Our

superconducting memory cell incorporates this approach in a defect-tolerant design to ensure
operation despite ever-present unreliable junctions; furthermore, its content addressability is
appealing for high-density applications.

The important energy scales of the crossbar array are those associated with the super-
conducting wires and the Josephson junctions. Each superconducting wire is characterized by
a macroscopic phase which is constant in equilibrium; here we assume that phase slips in each
wire are energetically unfavourable. Application of a magnetic field results in the rotation of
this phase along each wire, where the rotation angle is determined by the amplitude of the
applied field [10]. The interaction energy of a Josephson junction is determined by the phase
difference across its insulating layer; thus patterns can be written into the couplings of the
superconducting network by tuning local applied fields.

The coexistence of multiconnectivity and non-linear elements (Josephson-coupled super-
conducting wires) in this array is a crucial feature that it shares with prototypical associative
memories [1]. Theoretical studies indicate that this crossbar network has long-range temporal
correlations (memory) and an extensive number of metastable states [5, 11]; furthermore, it
has also been fabricated and studied in the laboratory [12,13]. Thus it is natural to explore its
possible use for content-addressable information storage, specifically pursuing its realization
of a simple neural network. Here one would like to store p patterns, ζµj = ±1 (1 � µ � p),
so that if the memory is exposed to a key (ξj ) that has a significant overlap with a stored image:

q = 1

N

N∑
j

ξj ζj � 1√
N

then its output is the desired pattern (ξ̃k = ζk). For convenience, we use the variables ξ = ±1
instead of the usual binary notation n = 0, 1; they are related by ξ = 2n− 1. A simple model
for such a memory is an array of McCulloch–Pitts neurons (figure 1). The patterns are stored
in the couplings, Jjk , which can be both positive and negative. Each non-linear element has
multiple inputs, and the output is a non-linear function of the weighted sum of the inputs:

ξ̃k = sgn

(∑
j

Jjkξj

)

where sgn(x) = {+1,−1} for {x � 0, x < 0}. Clearly the output is robust against input errors
due to the multiple connections present.

In order to ensure that stored patterns can be retrieved by small keys, the couplings must
be chosen such that these images correspond to stable configurations of the network. Hopfield
has proposed an algorithm [14] where the desired patterns are local minima of an energy
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function, e.g.

H = −1

2

∑
jk

JjkSj S̃k

where Sj , S̃k ∈ {−1,+1}. Here all possible states of the network are represented as a rough
energy landscape whose stable minima correspond to stored patterns. Release of the system
in any part of this landscape leads to its search for the nearest valley. In this algorithm, the
couplings are chosen such that the energy is minimized for maximal overlap of S̃k , the array
configuration, and the desired output, ξ̃k (=ζk). For one pattern, this condition is satisfied for
Jjk = (1/N)ζj ζk where N is the number of pattern bits; then

H = − 1

2N

(∑
k

S̃kζk

)2

.

With this choice of Jjk , the output is identical to that of the McCulloch–Pitts network since
S̃k ≈ ζk minimizesH . We also note that, with these Jjk , a real input Sj ≈ ζj yields the desired
output if it has errors in almost all its bits. In the Hopfield model, the couplings associated
with several stored images are simple superpositions of the one-pattern case such that

Jjk = 1

N

p∑
µ=1

ζ
µ

j ζ
µ

k

where µ labels each pattern. The total pattern storage capacity of the network, pmax , is
dependent on the acceptable error rate; in general pmax = αN where α � 0.138 if the allowed
bit-error probability in each pattern is Perror < 0.01 for Ising spins; for xy-spins [1] with
binary couplings (Jjk = ±1), the case relevant for the superconducting array, α ∼ 0.1. Here
we discuss the Hopfield algorithm because of its simplicity, but we note that other more efficient
algorithms [1] can also be implemented in this network.

The crossbar Josephson array (figure 1) can be adapted to become a superconducting
analogue of a McCulloch–Pitts network. It is described by the Hamiltonian

H0 = Re
∑
jk

S∗
j JjkS̃k (1)

with 1 � (j, k) � N where j (k) labels the horizontal (vertical) wires respectively. Sj and S̃k
are effective complex spins with unit amplitude, e.g. Sj = eiφj where φj is the phase of the
j th superconducting wire. In this implementation Sj and S̃k code the stored images. Their
relative change with respect to a reference pattern (Sj = S̃k = 1 for all j, k) is accessed
using voltage pulses and the Josephson relation previously discussed. More specifically a key
of voltage pulses can be applied to a small subset (>

√
N ) of the horizontal wires, thereby

altering the phase differences at the associated nodes. The phases of the vertical wires must
readjust in order for the system to settle into a stable configuration, a process which results
in the absence/presence of a voltage pulse. We re-emphasize that the array phases must be
reset to a reference state with φj = φk = 0 (1 � j, k � N ) before subsequent image
acquisition; this will be discussed further below. Each stored image of N output voltage
pulses can therefore be addressed/retrieved by a particular key. Half-integer SFQ voltage
pulses (�φ = ∫

V dt = �0/2) may be used in direct analogy with the McCulloch–Pitts array
where inputs nk ∈ {0, 1} now refer to the absence/presence of a SFQ pulse.

The couplings of the superconducting array:

Jjk = EJ√
N

exp
2π i�jk

�0
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are determined by the magnetic flux, �jk , and the energy scale of an individual junction, EJ .
In order to determine Jjk , we consider the closed rectangle formed by horizontal (vertical)
wires j (k) and completed by the sample edges passing through the origin. The flux enclosed
in this loop contributes a phase �jk/�0 to the coupling. For a uniform magnetic field H ,
�jk = H(jk)l2 where l is the interwire spacing. We emphasize that the sign of Jjk depends
on the value of �jk/�0. In complete analogy with the McCulloch–Pitts network, patterns
are stored in this superconducting associative memory by appropriate choice of the weights,
Jjk . Because the Jjk are functions of the enclosed fluxes, �jk , they can be set to their desired
values by appropriately tuning the local applied field Hjk . From a practical standpoint, these
couplings are ‘written’ by local fields applied to individual plaquettes of area l2. For an
elementary cell with edges defined by {j, j + 1, k, k + 1)}, the product of the couplings at
the four corners, Pj,j+1,k,k+1, determines the plaquette flux, �jk

plaquette—if Pj,j+1,k,k+1 � 0, then

�
jk

plaquette = �0/2; otherwise, �jk

plaquette = 0. We note that other algorithms can be used
to determine the couplings with more complicated applied fluxes; here we use the Hopfield
model as an illustrative example.

In practice, this writing procedure can be accomplished by a conventional planar array
of superconducting quantum inference device (SQUID) loops superimposed on the crossbar
network. The latter, unlike the former, traps flux; the desired plaquette in the superconducting
associative memory can be addressed using a combination of voltage pulses and current
biasing [9]. In order to ensure that such externally imposed fluxes control the superconducting
phases of the crossbar array, we require that the self-induced flux associated with its area,
A = (Nl)2, is less than a single flux quantum. This condition for weak supercurrents and
negligible induced fields puts limits on the normal-state resistance of each junction (R0) and
N [12, 13]. We note that an added advantage of weak supercurrents is the lack of unwanted
cross-talk between adjacent elements; this problem often occurs when information is stored
in flux, and the associated supercurrents are large. We emphasize that in our memory, the
Josephson junctions switch fluxoids while the applied magnetic fluxes remain fixed; it is the
supercurrents, not the local fields, that code the information that is retrieved.

The tolerance of the crossbar Josephson memory cell to defective elements and to input
error results from the non-local nature of its data storage both at the physical and the logical
levels. In conventional planar superconducting arrays there are O(N2) individual short super-
conducting wires, and the fluxoids are spatially confined to areas A ∼ l2 where l is the
internode spacing. By contrast, in the multiconnected network the phases reside on the 2N
wires of length Nl; thus the fluxoids here are extended to the entire system. Data are coded
non-locally in configurations of these superconducting phases, similarly to the situation in an
optical holographic storage device [15]. There the stored patterns are independent of the input
and an analogous superconducting holographic memory can be constructed. For example, let
us consider the stored configuration ζ pk = exp(2π ikp/N) where k and p are indices labelling
the horizontal wires and the stored patterns respectively. Then the input voltage pulses would be∫

V dt =
[
kp

N

]
�0

where [ ] refers to the fractional part. Using the clipped Hopfield algorithm [1], we have

Jjk = 1

N
sgn

p∑
µ

ζ
µ

j ζ
µ

k

which yields the desired output

S̃
µ

k =
∑
j

J ∗
jkζ

µ

k ≈ ζ
µ

k .
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We note that any orthogonal basis for the inputs will work; therefore the crossbar Josephson
network can be used as a key component of both an associative and a holographic memory.

The associative memory described here codes the images using analogue variables,
the superconducting phases of the 2N wires, which are vulnerable to error; thus in any
practical realization these continuous degrees of freedom must be clipped using a double-
well potential. Furthermore, an additional field must be imposed to ensure that the reference
state (φj = φk = 0 for all j, k) is stable. One of the simplest ways to incorporate both of these
features into our system is to add two terms to our original H0 resulting in the Hamiltonian

H = H0 − h1

∑
j

cos 2φj − h2

∑
k

cosφk (2)

where H is defined in equation (1), and h1 and h2 are parameters that are chosen to optimize
performance by minimizing error. In figure 2, we display numerical results with typical values
of h1 and h2. Here the crucial point is that one can tune these parameters such that there is
error-free recovery of a stored N -bit image for a key larger than ηN bits where η = 0.3 for
N = 128. Thus, consistent with our expectations, we have a clear demonstration that this
array is content addressable and fault tolerant.
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Figure 2. The probability of a single error as a function of the key length in the system of
N = 128 horizontal/vertical wires and 16 stored images for three different choices of threshold
fields. Clearly, the choice H1 = 16, H2 = 48 gives very reliable recovery for any key exceeding
48. The optimum (high reliability and large minimum key length) choice for this number of wires
is H1 ≈ 16, H2 ≈ 40.

Practically, this superconducting memory consists of superimposed conventional and
crossbar Josephson networks for writing and reading respectively, and a phase-reset circuit.
The latter can be built from a set of planar double-junction SQUID loops connected to each
horizontal wire and frustrated by a local magnetic field; they provide variable grounding to the
circuit. A large coupling to ground locks the relevant phase into a reference state, whereas a
weak one allows the next data retrieval process to be performed [16]. Similarly the first clipping
field can be implemented by connecting each horizontal wire to a four-junction SQUID loop
with a π -flux where the strength of the junctions determines h1. The second field, h2, is
realized by coupling each vertical wire to ground via a single Josephson junction.
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The resulting memory cell can then be embedded in an environment with known
input/output SFQ circuitry that includes DC/SFQ voltage pulse converters and SFQ trans-
mission/amplification lines [9]. The network parameters, the individual junction resistance
(R0), capacitance (C0), critical current (Ic), and the coupling (EJ ) and the charging (EC)
energy scales, should be chosen to optimize performance by minimizing access and retrieval
times. The read-out procedure in the proposed associative memory is limited by the access
time of each image which, in turn, is determined by the system’s relaxation time, τR , to an
energy minimum.

Since the phase differences at each junction evolve simultaneously, the single-junction
switching time (τ0) provides a natural timescale for the equilibration of the whole array. Thus
this memory is highly parallelized from a computational standpoint. Naturally one expects
much longer relaxation times near a critical point, which here corresponds to the situation
where the maximum number of patterns (pmax) is stored in the crossbar network. Indeed our
numerics indicate that for the number of stored patterns p < pmax , the relaxation occurs very
fast; specifically for the network of N = 128 wires and p = 16 (where pmax ∼ 20), we find
that τR � 10τ0. Thus to optimize performance, we want to minimize τ0, the single-junction
timescale that determines the image access time:

τ0 ∼ max

(
1

�
,

√
R0

N2EJRQ

)

where � is the superconducting gap, EJ = Ic�0/(2πc) and RQ = h̄/e2 is the quantum of
resistance.

There are two additional conditions forEC andR0,EC � 0.01N2EJ and (1/N)R0 � RQ,
that are required to minimize errors by ensuring weak phase fluctuations; hereEC = e2/(2C0).
The energy dissipated in each read-out process is approximately the total Josephson energy
per wire (∼NEJ ), which is roughly NRQ/(R0�) for the optimal parameters. For aluminium
wires this minimal dissipation per bit is 10−21 joules for aluminium wires in contrast to its
value of ∼10−15 joules for conventional semiconducting electronics [17]. As an aside, we note
that thermal noise plays a negligible role here for reasonable system sizes and temperatures
since for the optimal choice of parameters (EJ ∼ (RQ/R0)�) the operating temperature
T � � � EIM ∼ NEJ is significantly less than the typical energy scale associated with each
image/wire, EIM .

In summary, we have proposed an associative memory device that is a superconducting
analogue of a McCulloch–Pitts network. Because this memory is intrinsically parallel due to
its crossbar design, an image of N bits can be retrieved in a time (per bit) τDT ∼ τA/N where
τA is the single-bit access time; by contrast τDT = τA in a conventional local memory. An array
ofN = 1000 wires with l = 0.5µm, which satisfies the self-induced flux criteria [12], has a bit
capacity of BC = 0.1 ×N2 = 105 bits; a set of such arrays on a typical 1 cm2 chip would then
have a capacity of one gigabyte with an image access time (per bit) of τDT = 10−15 seconds. By
contrast, current state-of-the-art nonvolatile memories (e.g. flash EEPROMs and ferroelectric
RAMs) [18] have capacities of 100 kilobytes with 100 nanosecond single-bit access times;
for a 1000-bit image the comparable image access time (per bit) is τDT = 10−7 seconds due
to serial bit retrieval. The fault tolerance of the proposed superconducting memory enhances
its appeal as a candidate for ultrafast high-density information storage without conventional
problems of volatility, power dissipation, and subsequent heat removal. In contrast to most
previous hardware implementations of associative memories, this design is tolerant to both
physical and logical imperfections; this situation is reminiscent of the biological networks that
inspired the original studies of content-addressable data storage [1]. It also shares this physical
robustness with optical holographic memories, though its access time is significantly faster
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and its read-out is non-destructive. Such use of non-local degrees of freedom for information
storage has also been proposed for fault-tolerant quantum computation since the effects of
noise should be small [19]. We end by noting that we can field-tune the long-range array such
that its stored images are maximally distant from each other in phase space. In this case the
matrix elements associated with external noise will be negligible, and these patterns will have
long decoherence times. Such orthogonal configurations could be promising as basis states
for quantum logic processes.
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